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We study models of correlated percolation where there are constraints on the occupation of sites that mimic
force balance, i.e., for a site to be stable requires occupied neighboring sites in all four compass directions in
two dimensions. We prove rigorously that pc�1 for the two-dimensional models studied. Numerical data
indicate that the force-balance percolation transition is discontinuous with a growing crossover length, with
perhaps the same form as the jamming percolation models, suggesting that all models belong to the same
universality class with the same underlying mechanism driving the transition in both cases. We find a lower
bound for the correlation length in the connected phase and that the correlation function does not appear to be
a power law at the transition. Finally, we study the dynamics of the culling procedure invoked to obtain the
force-balance configurations and find a dynamical exponent similar to that found in sandpile models.
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I. INTRODUCTION

Uncorrelated percolation, with its associated geometric
phase transition, is arguably the most studied paradigm for a
phase transition in a disordered system. Not only have physi-
cists been able to nail down the universality class of perco-
lation, more recently, mathematicians have been able to rig-
orously verify the universality class for at least one particular
percolation model �1,2�. Even more recently, this work has
been extended to a second two-dimensional percolation
model �3�. Other two-dimensional models are expected to
follow.

While uncorrelated percolation exhibits a continuous
phase transition, there exists a new class of correlated perco-
lation models that provably exhibit a discontinuous phase
transition—a notable departure from the transition in uncor-
related models �4–8�. What do we mean by correlated per-
colation? We mean that there are constraints imposed on the
occupation of sites such that correlations in the occupation
arise regardless of whether or not there is a transition.

One of the simplest models of correlated percolation is
k-core/bootstrap percolation �9–13�. It is defined as follows.
Consider a regular lattice of coordination number Zmax and
some integer k with 2�k�Zmax. Initially, sites are indepen-
dently occupied with probability p. Then, all occupied sites
with fewer than k neighboring occupied sites are eliminated.
This decimation process is repeatedly applied to the surviv-
ing occupied sites, until all surviving sites �if any� have at
least k surviving neighbors. The surviving sites are called the
k core, and phases of the model are determined by the pres-
ence or absence of an infinite cluster of these survivors. The
k-core percolation model has a number of physical realiza-
tions �14�, including nonmagnetic impurities in a magnetic
system �9� and the glass transition via a kinetically con-
strained spin-flip model known as the Fredrickson-Andersen
model �15,16�.

Another well-known model of correlated percolation is
the Kob-Andersen model �17�, a particle-conserving counter-
part to the Fredrickson-Andersen model. In the Kob-
Andersen model, a particle can hop if and only if there are at
least m empty neighbors before and after a particle hop. As

the density of particles increases, it becomes more difficult to
hop, and the density of frozen particles increases, resulting in
slower dynamics. Eventually, the frozen particles percolate
throughout the system, resulting in a glass transition. Based
on numerical analysis of the percolation of frozen particles,
it was initially thought that the Kob-Andersen model exhib-
ited a glass transition at a value of pc�0.84 in two dimen-
sions. However, recent work by Toninelli et al. rigorously
demonstrates that the thermodynamic pc is actually unity for
the range of m relevant to the glass transition �18,19�.

Jamming percolation, a new class of two-dimensional cor-
related percolation models inspired by kinetically con-
strained models, was introduced by Toninelli et al. �4,5,8�.
These models consist of the following occupation con-
straints: a site can remain occupied only if there exists at
least one occupied site in set A and one occupied site in set
B, or one occupied site in set C and one occupied site in set
D. All sets are disjoint from each other and contain two sites.
See Fig. 1 for the sets in a jamming percolation model called
the spiral model. Jamming percolation models exhibit dis-
continuous phase transitions with a crossover length scale
that diverges faster than any power law. It has been recently
demonstrated that this behavior prevails when more than
four disjoint sets are introduced �20�. While there are rigor-
ous results for some models in this class, it is unknown how
generic this transition is and whether or not there are other
unusual, or atypical, phase transitions of correlated percola-
tion.
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FIG. 1. �Color online� The sets for the yellow �light gray� site as
defined by the spiral model.
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Here, we present a class of correlated percolation models
denoted as force-balance percolation models. Force-balance
percolation was originally introduced in Ref. �11� as a toy
model for the jamming transition in finite dimensions. The
jamming transition is a transition from a liquidlike to an
amorphous solidlike state as some particular control param-
eter, such as the packing density, is varied. Examples of po-
tentially related jamming systems are glass-forming liquids,
colloidal suspensions, foams, emulsions, and granular matter
�21�. Despite decades of study of the glass-forming liquids in
particular, however, it is even unclear whether these transi-
tions are true thermodynamic transitions or merely examples
of kinetic arrest �22�.

There has been some recent activity focusing on a zero-
temperature jamming transition in a system of repulsive soft
spheres as the packing density is increased. Numerical simu-
lations by O’Hern et al. considered repulsive soft particles in
two and three dimensions �23,24�. For small packing fraction
�, the particles easily arrange themselves so as not to overlap
with any other particle, and the total potential energy thus
vanishes. As � is increased, there is a particular value of �c
�point J� above which the particles can no longer avoid each
other and the total potential energy becomes nonzero. The
system jams in that it develops nonzero static bulk and shear
moduli above �c. The average coordination number �the av-
erage number of overlapping neighbors per particle� jumps
from Z=0 to Z=Zc at point J, and then rises with increasing
packing fraction � as Z−Zc���−�c��, where �=0.5. This
behavior was recently observed in two-dimensional systems
of glass beads �25�. Furthermore, as � approaches �c from
above, the singular part of the shear modulus vanishes with
the exponent �=0.5; more recent simulations also find that
there is a length scale that diverges with an exponent
�=0.25 �26�. So the transition at point J appears to have
characteristics of both first- and second-order phase transi-
tions: at the transition, Z is discontinuous, but there are non-
trivial power laws.

To understand this somewhat unusual transition, an anal-
ogy to k-core/bootstrap percolation was made in Ref. �11�.
The scalar aspect of the principle of local mechanical stabil-
ity, where particles need d+1 contacts, maps to a require-
ment of k occupied neighbors. Surprising agreement was
found between the mean-field k-core percolation exponents
and the repulsive soft-sphere simulations. We note that the
two- and three-dimensional simulations observed the same
exponents, suggesting a possible critical dimension of 2
since logarithmic corrections would be difficult to determine
�27�.

While there is agreement between the mean-field k-core
exponents and the low-dimensional repulsive soft-sphere ex-
ponents, k core in finite-dimensional spaces does not appear
to have such agreement. Such systems seem to fall into one
of two classes: the transition is either continuous and in the
same universality class as normal percolation, or it does not
occur until pc=1. In the first class, systems that allow finite
clusters all exhibit continuous transitions �28,29�. In the sec-
ond class, large voids are very likely to grow, and in the
infinite system limit, with a probability of 1, there will be at
least one void that will grow to empty the entire system
�30,31�. This prevents k-core percolation for any p�1. Un-

fortunately, neither category of k-core percolation describes
the nontrivial discontinuous transition observed in the finite-
dimensional simulations and experiments of jamming.

In an effort to try to capture the behavior of jamming in
finite dimensions, force-balance percolation was introduced
in Ref. �11�. In this model, the k-core constraint is retained,
but the vectorial constraints of the principle of local me-
chanical stability are mimicked by creating culling rules that
take into account where the neighboring particles are located.
Loosely speaking, if there is a neighboring contact to one
side of the particle, there must be at least one neighboring
contact on the other side of the particle to allow for force
balance.

We must emphasize that the force-balance percolation is a
model with no explicit forces. We look only at connectivity,
in contrast to models such as rigidity percolation where re-
pulsive and attractive forces are defined on, say, a lattice of
springs �32–35�. However, the nature and possible universal-
ity of the rigidity percolation transition are still up for debate,
despite decades of study. Since force-balance percolation is a
much simpler model there is ultimately a better chance of
analyzing it beyond numerics.

Here, we explore several versions of force-balance perco-
lation, both rigorously and numerically, to begin to answer
the following questions:

�0� Is there a force-balance percolation transition?
�1� If there is indeed a transition, what are its properties?

Is it continuous?
�2� How generic is the transition among the various force-

balance models?
�3� Is there a link between force-balance percolation and

jamming percolation? Are they in the same universality
class?

The paper is organized as follows. In Sec. II we review
the force-balance percolation model introduced in Ref. �11�
and introduce two related models. We present in Sec. III a
rigorous proof that the thermodynamic pc is less than unity
for at least two of these models. Earlier work on k-core per-
colation misinterpreted numerical results, finding transitions
in novel universality classes, with pc�1 �30,36,37�, when in
fact the models studied had pc=1 �31,38,39�; our proof ren-
ders our subsequent interpretation of the numerical data pre-
sented in Sec. IV on sounder footing. Finally, we close in
Sec. V with a summary of our findings and discuss their
implications.

II. MODELS

For the first force-balance percolation model, we begin
with a two-dimensional square lattice. Each site neighbors all
sites except itself within a 5�5 square—each site therefore
has 24 nearest neighbors �NN�. �For a 3�3 square, with the
following rules, pc=1.� Since we are in two dimensions, we
impose a three-core constraint. However, we also impose the
force-balance constraint, which is the following: there must
be at least one occupied neighbor in set A, which in turn calls
for at least one occupied neighbor in set B, and there must be
at least one occupied neighbor in set C, which in turn calls
for at least one occupied neighbor in set D. The four sets
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A–D are defined in Fig. 2. The force-balance constraint can
be succinctly stated as �A and B� and �C and D�, where each
letter X is short for “at least one occupied site in set X.” Note
that the force-balance constraint is defined in such a way
such that vertical and/or horizontal lines of occupied par-
ticles are, by themselves, not stable. Figure 3�a� demon-
strates an allowed configuration and Fig. 3�b� demonstrates a
prohibited configuration.

To enforce the force-balance and k-core constraints, we
initially occupy sites on the lattice with independent occupa-
tion probabilities p, and then repeatedly remove occupied
sites that violate either the k-core or force-balance con-
straints, until all remaining occupied sites are stable. Note
that p is the occupation density before culling and generi-
cally differs from the final occupation density.

The model is Abelian. In other words, the final configu-
ration after the culling process is independent of the order in
which sites are culled. It can be done in parallel, or in series,
or some combination thereof. One can define another force-
balance-like model that allows for horizontal and vertical
lines of occupied neighbors. However, such a model would
be non-Abelian. Non-Abelian models are less desirable be-
cause in such models the final results depend on the order in
which sites are culled. In our work, the culling procedure is

merely an algorithm to achieve the force-balance percolation
configuration.

To determine whether or not the behavior observed in the
original force-balance model is generic, we define two addi-
tional Abelian models. Our second model is defined on the
square lattice, with 16 nearest neighbors, and quadrants as
defined in Fig. 4. Again, k=3 and the force-balance con-
straint is the same as above: �A and B� and �C and D�. This
model is obviously similar to the first one, although the ratio
of k to Zmax is different.

The third model is a three-dimensional model with 26
nearest neighbors and six regions �color-coded in Fig. 5�.
Each of the six regions consists of a 3�3 square on a face of
the 3�3�3 cube centered on the site whose stability is
being analyzed. For this model, we impose a four-core con-
straint �since d=3�, and the force-balance condition requires
an occupied site in each of the six regions.

For comparison, along with numerical simulations of
these three models, we also performed simulations on the
spiral model. This model was introduced by Toninelli et al.
�7,8�, and they proved that it undergoes a jamming transition
and obtained rigorous results about the properties of the tran-
sition �8�.
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FIG. 2. �Color online� Sets for the yellow �light gray� site as by
defined by the 24 nearest-neighbor force-balance model.
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FIG. 3. �Color online� Yellow �light gray� sites denote occupied
sites and red-colored �dark gray� sites denote neighboring unoccu-
pied sites. �a� Allowed configuration. �b� Forbidden configuration.
While the number of occupied nearest neighbors is greater than 3,
the force-balance condition is violated.
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FIG. 4. �Color online� A second force-balance model with 16
nearest neighbors for the yellow �light gray� site.

���������������

FIG. 5. �Color online� A force-balance model on a three-
dimensional lattice with 26 nearest neighbors for the patterned site.
A red �dark gray� site participates in only one of the six sets, a black
site in two of the six sets, and a yellow �light gray� site in three of
the six sets.
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III. RIGOROUS RESULTS

A. Proof that pc�1 in the 2d force-balance models

To prove that pc�1 for the initial force-balance model on
the square lattice, as in Ref. �8�, we will demonstrate that
pc�1 for an alternate model with the same 24 nearest neigh-
bors. In particular, we require �1� k=6, �2� at least one occu-
pied neighbor in the four-site region to the northeast �NE�,
and �3� at least one occupied neighbor in the four-site region
to the southwest �SW�. See Fig. 6 for the two regions. Since
any sites stable under these conditions are automatically
stable in the force-balance model, if pc�1 for the k=6
NE-SW model, then also pc�1 for the force-balance model.

Next, we prove that the origin has a nonzero probability
of participating in an infinite cluster for the k=6 NE-SW
model. We divide the lattice into clusters of three sites, as
shown in Fig. 7. Certain clusters are defined as adjacent and
connected by directed lines in Fig. 7. Sites not grouped in
three clusters play no role in the proof and can be ignored.
Now, suppose that p� �pc

DP�1/3, where pc
DP is the critical

probability for two-dimensional directed percolation. Then
each three-cluster group is occupied with probability
p3� pc

DP. The directed lines in Fig. 6 are isomorphic to two-
dimensional percolation. Thus, the probability of the origin
participating in an infinite chain of three clusters to the
northeast is nonzero, provided the three-cluster group at the
origin is occupied. Similarly, the probability of the origin
participating in an infinite chain of three clusters to the
southwest is also nonzero. Looking only at the infinite chain
of three clusters, it is straightforward to check that every site
in it is stable under the culling rules. To see this, observe that
each three-cluster group in the infinite path has only four

possible configurations of adjacent three clusters, shown in
Fig. 8. For all four configurations, all sites in the central
three-cluster group are stable under the k=6 NE-SW stability
condition. Therefore, pc� �pc

DP�1/3�1. This bound holds for
k�6 for the force-balance model since the force-balance
constraints are a subset of the constraints in the NE-SW
model.

A similar proof holds for the 16 nearest-neighbor force-
balance model. For this model, one can construct two clus-
ters to obtain a proof that for k�4 we have pc� �pc

DP�1/2.
We note that the simplest lower bound for pc for both

models is pc of the corresponding uncorrelated percolation
models �i.e., pc of the model without culling�. Therefore, pc
is bounded away from zero with a region of p where no sites
survive culling since no finite clusters are allowed.

Regarding the three-dimensional model, as was shown in
Ref. �20�, for three-dimensional versions of the jamming per-
colation models, percolating structures along one direction
can cross without having sites in common. This prevents an
obvious mapping to directed percolation. We have therefore

SW

NE

FIG. 6. �Color online� k=6 NE-SW model.

FIG. 7. �Color online� Adjacent clusters of three sites in the
NE-SW model.

FIG. 8. �Color online� Local
configurations of three clusters in
the NE-SW model.
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not obtained a rigorous bound for pc in the three-dimensional
model.

B. Nature of the transition?

While it can be shown that pc�1 for the two-dimensional
models, there is no proof as to whether the transition is con-
tinuous or discontinuous. For the two-dimensional jamming
percolation models, there exists a rigorous argument for a
discontinuous transition assuming a conjecture regarding di-
rected percolation �4,8�. The argument relies on having two
independent directed percolation processes arising from the
disjoint pairs of sets, each containing two sites. The jamming
percolation transition can then be shown to occur at the di-
rected percolation transition point. In the force-balance mod-
els considered here, the sets are composed of more than two
sites and are not disjoint. The critical occupation probability
thus cannot be easily identified. This means that it is not
obvious how to construct a rigorous argument along the lines
of the jamming percolation models.

However, we first argue that the alteration of some prop-
erties of the jamming percolation models to make them look
more like force-balance percolation should not change the
nature of the jamming percolation transition. For example,
the property of having two sites per set in the jamming per-
colation models can be extended to having more sites per set
by investigating other lattice models with more nearest
neighbors, but belonging to the same universality class as
directed percolation. Surely, there exist other directed perco-
lation processes with more than two neighbors per site.

On the other hand, the force-balance rules can be modi-
fied to be more like the jamming percolation models, where
“and” between overlapping sets is equivalent to “or” be-
tween various pairs or triplets of smaller disjoint sets �see
Fig. 9�. While the occupation of pairs of disjoint sets is the
same as in the jamming percolation case �excluding the
k-core constraint where more than one site in the set must be
occupied for the pairs�, the occupation of triplets is more

stringent. It remains to be seen whether or not a rigorous
argument can be constructed for force-balance percolation.

Given these arguments, the transition for the force-
balance percolation models may in fact behave similarly to
the jamming percolation models and so we expect the tran-
sition in the force-balance case to be discontinuous as well.
We will numerically test this hypothesis as well as others in
the upcoming section.

IV. NUMERICAL RESULTS

A. 24 NN model

1. Culling dynamics

We begin our numerical simulations of the 24 NN force-
balance model by looking at the dynamics of the culling
process. The lattice has size L�L. We surround it with a
boundary of fully occupied sites, two layers thick, which are
never culled. We denote this as wired boundary conditions.
Then, at each time step, we simultaneously cull every un-
stable site. We repeat this until all remaining sites are stable
and record the culling time.

For any given system size, the mean culling time as a
function of the initial occupation density peaks for some
density—a sample curve for L=2896 is shown in Fig. 10.
The density at which the curve peaks provides one possible
definition of the critical density. The size of the peak is de-
noted by M, the maximum number of average culls. M
grows with L. We plot M vs L on a log-log scale in Fig. 11.
The results are well fit by a power law, although there is a
visible overall curvature. A best fit for L	32 gives M 
L�,
with �=1.226�0.027, which is suggestively close to 5/4.

We note that 1.226 is close to the dynamical exponent
measured for avalanches in the two-dimensional Abelian
sandpile model �40�. More generally, Pietronero et al. �41�
gave a renormalization-group argument that the avalanche
exponent should be the same for a wide class of “sandpile-
like” models �41�. They obtained an approximate exponent
of 1.234�5 /4. Sandpilelike models are those in which en-
ergy is dissipated, so that instabilities propagate from site to

B’

A’D’
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F’

H’

G’

FIG. 9. �Color online� The force-balance rules can be imple-
mented with �A� and C�� or �D� and B�� or �E� and B� and C�� or
�F� and C� and D�� or �G� and A� and B�� or �H� and A� and D��
or �A� and G� and H�� or �B� and E� and G�� or �C� and E� and F��
or �D� and F� and H�� or �E� and F� and G� and H��.
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FIG. 10. �Color online� Mean culling time as a function of ini-
tial occupation density for the 24 NN model, L=2896, the largest
system size studied. Error bars are smaller than the symbols.
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site. A similar process may be responsible for the exponent
of approximately 5/4 seen in our models here: culling at a
site may be analogous to toppling at a critical point of a
sandpilelike model, in the sense that the culling of one site
triggers adjacent cullings that can propagate long distances.

2. Force-balance avalanches

Farrow et al. �42� studied the dynamics of culling in
k-core percolation on various lattices by looking at ava-
lanches. More precisely, the culling process is iterated until a
stable k-core configuration is obtained. Then, a random site
in the stable k core is removed. It triggers the removal of
other sites until the k core stabilizes once more. The number
of sites removed during this removal is the culling avalanche
size. The process is repeated until the lattice is completely
empty. In cases where pc=1 and the stability rules allow no
finite clusters, a power-law distribution of culling avalanche
sizes was found. For these cases, the system goes from being
unoccupied for pc�1 to being fully occupied at pc=1. Since
all sites must be eventually be removed below pc=1 and no
finite clusters are allowed, the culling avalanches should be-
come spatially long ranged near pc=1. This result is to be
contrasted with k-core cases with finite k-core clusters.
There, no power-law distribution of culling avalanche sizes
was found �42�.

In the force-balance model, there are no finite force-
balance clusters, so the culling avalanches should be spa-
tially long ranged near the transition. Whether or not there
should be a broad distribution of sizes is not clear a priori.
Given the sandpilelike behavior detected in the mean culling
time required to obtain a force-balance cluster, one may ex-
pect to find a broad distribution as is found in sandpile mod-
els. However, if the force-balance percolation transition is
discontinuous one would expect a well-defined avalanche
size for those systems whose redundant sites have already
been removed.

Numerically, we calculate the probability of having a cull-
ing avalanche size s, P�s�, in the presence of periodic bound-
ary conditions �see Fig. 12�. The probability is broad near
and above the transition for intermediate avalanche sizes. On
a log-log plot, the slope of P�s� for the broadly distributed

intermediate-sized avalanches depends somewhat on p and
on L. More careful study is needed to determine whether or
not these avalanche sizes are consistent with the measured
−1.253 for sandpile models �41�. It is of note that for
p=0.45 and L=512, for example, the slope is approximately
−1.3.

As opposed to quantitative analysis of the intermediate-
sized avalanches, we are more interested in first determining
the qualitative nature of the curves. Instead of a purely broad
distribution, there is a prominent peak at the tail of the dis-
tribution. These well-defined avalanche sizes correspond to
the last occurring avalanches when the lattice ultimately
empties out. These correspond to the marginal infinite clus-
ter. The peak persists as p is decreased toward pc indicated
from the position of the maximum in the mean culling times,
suggesting a discontinuous transition for the onset of the
infinite cluster. This behavior is retained in the larger systems
with the peak becoming more separated from the broad part
of the distribution �see Fig. 13�.

3. Spanning cluster

We next look at Ps, the probability of spanning. We define
this, for wired boundary conditions, as the probability that
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FIG. 11. �Color online� Peak of the mean culling time as a
function of L for the 24 NN model. The best fit indicated by the
solid line has a slope of 1.226�0.027.
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FIG. 13. �Color online� Log-log plot of P�s� for L=128 and 512
for comparison. The L=512 curves have been shifted downward by
a factor of 0.1.
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the largest cluster connects either the top and bottom sides,
or the right and left sides; for this definition, sites are defined
as connected if one is within the 24-site neighborhood of the
other �see Fig. 2�. Figure 14 depicts Ps for the 24 NN model
with wired boundary conditions.

Figure 15 shows the same curves, but for periodic bound-
ary conditions. For periodic boundary conditions, it is impos-
sible to have any occupied sites without having a spanning
cluster, so to check if we have a spanning cluster, we just
need to check that at least one site is occupied.

For periodic boundary conditions, the Ps curves can be
generated quickly by a simple modification of the Newman-
Ziff algorithm �43�. For uncorrelated percolation, the
Newman-Ziff algorithm passes once through every possible
density, in increasing order, by adding occupied sites in ran-
dom order, and updating the connectivity with the Hoshen-
Kopelman algorithm �44�. This allows for the efficient gen-
eration of Ps for every occupation density. This method is
not available to us for the force-balance model with wired
boundary conditions, because there sites are added by in-
creasing the density, but also removed by culling. This pre-
vents a single pass through all densities from being done in
time O�L2 ln L�. �The Hoshen-Kopelman algorithm does not
allow cluster identifications to be rapidly updated after the
removal of sites.� However, with periodic boundary condi-
tions in a force-balance model, we do not need to run the

Hoshen-Kopelman algorithm. We can instead start from a
fully occupied lattice and remove sites until the culling con-
dition causes an empty lattice. This allows the calculation of
Ps at every density in time O�L2�.

As pointed out in Ref. �43�, with the Newman-Ziff algo-
rithm, quantities such as the average cluster size as a func-
tion of p will not be statistically independent since the con-
figuration is changed by one occupied site at a time.
However, typically, we are using quantities as a function of p
to obtain something else, such as pc or the width of the
transition. For these results, such correlations do not cause
problems. For example, a single ramp through the densities
produces one estimate of pc, another ramp produces a differ-
ent independent estimate of pc, etc. Therefore, the appropri-
ate error analysis is to calculate the variance over many
ramps through densities.

From Figs. 14 and 15, we can define the critical probabil-
ity for a specified system size, pc�L�, as the initial occupation
density that gives Ps=1 /2. This definition differs from that
based on the peak of the mean culling time, given in Sec.
IV A 1. However, as shown in Fig. 16, the two definitions
have the same qualitative dependence on L and approach
each other for large system sizes.

Given pc�L� we can extract the thermodynamic critical
point, pc�L=�, if given the functional dependence of pc�L�
on L. However, it is unclear what functional dependence to
fit to. It was assumed in Ref. �11� that �pc�L=�− pc�L��

L−1/�, where � is an exponent characterizing the divergence
of the length scale. With this functional form, � can be de-
tected by varying pc�� until a log-log plot gives a straight
line. However, such a procedure is not a check of the func-
tional form since we are allowed to choose pc��.

A check of the functional form can be done by looking at
the width W of the transition, which we define to be the
difference between the occupation probabilities that yield
Ps=1 /4 and 3/4. The width as a function of L is shown
in Fig. 17 for both wired and periodic boundary conditions.
The same renormalization-group formalism that implies
�pc�L=�− pc�L��
L−1/� also implies W
L−1/�. However,
Fig. 17 shows clear deviations from this power-law form.
This trend was starting to emerge in Ref. �11�, although it
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FIG. 14. �Color online� The probability of spanning for wired
boundary conditions in the 24 NN model.
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was masked by the large error bars for the larger systems. In
other words, the fit to the above assumption in Ref. �11� was
premature.

Based on our above heuristic arguments for a connection
between force-balance percolation and jamming percolation,
we instead fit to the form for a diverging crossover length
scale found by Toninelli, Biroli, and Fisher �TBF� �7,8� for
the spiral model. Approaching the transition from below,
TBF identified a crossover length �, such that systems of
size smaller than � are likely to have a spanning cluster,
while those of size greater than � are exponentially unlikely
to have a spanning cluster. TBF proved that � diverges at the
transition faster than any power law. In Ref. �4�, TBF argued
that the upper and lower bounds scaled similarly, finding
��exp�−C�p− pc�−��, where �= �1− 1

z ��� 	0.64. �Both
1
z 	0.63 and �� 	1.73 are from directed percolation �45�.�
Based on the TBF formula, we propose that W
 �ln L�−1/�.
The widths are replotted with the appropriate scales for this
fit in Fig. 18, and while the curves still have deviations from
a perfect straight line behavior, the agreement is significantly
better than for W
L−1/�. From the width data, for wired
boundary conditions, we extract �=0.39�0.01; for periodic
boundary conditions, �=0.45�0.02. The stated error bar is

purely statistical and does not take into account systematic
effects that occur given the small range of system sizes, so
one cannot necessarily rule out a link with overlapping di-
rected percolation processes. We also note that in Ref. �4�,
TBF stated that their numerical data were consistent with
�	0.64 given the large systematic error bars.

Now, if there is only one diverging length scale, then
it can be argued that �pc�L�− pc��� should be proportional
to W. So we choose the TBF fitting form and choose pc��
to minimize �2 for the best linear fit of ln�pc��− pc�L��
vs ln�ln L�, for L	32. The optimal fit, shown in Fig. 19,
is obtained for pc��=0.414�0.008 for wired boundary
conditions. �The error bar is obtained by testing which
values of pc�� result in visibly noticeable curvature in the
plot.� For periodic boundary conditions, we obtain pc��
=0.425�0.005. The straight line obtained in Fig. 19 does
not make clear whether the TBF form is correct for our
model, given that we have the freedom to choose pc�� in
making the fit. From the fit with wired boundary conditions
we obtain �=0.51�0.09. Again, this result is to be com-
pared with TBF’s result of �=0.64.

From the two different results for �, it appears that W and
�pc�L=�− pc�L�� do not scale in the same way. There are
two possible, but incompatible, explanations for the differ-
ence in the results for �. One possibility is that the scaling of
W and �pc�L=�− pc�L�� is in fact the same in the thermody-
namic limit, but that we obtain differing �’s for the finite
system sizes studied due to the slow approach to the thermo-
dynamic limit. This would be reminiscent of the extremely
large finite-size effects seen in analogous systems, such as
k-core percolation, the Kob-Andersen model, and glassy dy-
namics. Numerically, this possibility is quite reasonable,
given that the TBF formula for the growing length scale has
an extra power-law factor in front. A second possible expla-
nation is that W and �pc�L=�− pc�L�� in fact scale differ-
ently. This would be possible if there are two diverging
length scales, rather than one; this would change the standard
picture of a renormalization-group fixed point controlled by
a single parameter, so that W and �pc�L=�− pc�L�� would no
longer be forced to scale in the same manner. There are
certainly two diverging length scales in mean-field k-core
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percolation: one associated with those in the infinite cluster
and one associated with sites that get removed in response to
one random site being removed.

4. Order parameter

We also investigate the order parameter �, the fraction of
sites in the infinite force-balance cluster. This is obtained for
a given system size and initial occupation density by gener-
ating configurations, keeping only those configurations in
which the largest cluster is spanning, and then finding the
average fraction of sites in the largest cluster for those con-
figurations. Plots are shown for L	128 in Fig. 20. The
curves lie on top of each other for large L, differing only in
the minimum value of p needed for the numerical simula-
tions to have a reasonable chance of obtaining occupied sites
after culling.

The minimum value of � is increasing, rather than de-
creasing, with the system size. We therefore assume that
there is a jump in the order parameter at the transition, de-
noted by �c. In other words, in the thermodynamic limit, as
soon as there is a spanning cluster, it occupies a finite frac-
tion of the system.

From Fig. 20, and the already-obtained result of
pc=0.414�0.008, we estimate the thermodynamic �c to be
�c=0.399�0.011. Furthermore, for each individual curve it
appears that just above the transition, � increases linearly
with p, suggesting that the order parameter exponent is
�=1. This result is to be contrasted with the mean-field
k-core percolation results and the repulsive soft-sphere simu-
lations, where �=1 /2.

5. Correlation function

We next look at correlation functions for this model, now
using only periodic boundary conditions. For these simula-
tions, for a given system of size L and density p, we generate
states with exactly pL2 occupied sites �rather than occupying
sites independently�. We only keep configurations that were
nonempty after culling, and in each of these, keep only the
largest cluster �this cluster was automatically spanning since
we use periodic boundary conditions�. We then calculate the
correlation function C�i�—the probability that sites a dis-

tance i apart are both occupied, minus an asymptotic con-
stant, to be discussed shortly. Moreover, we calculate corre-
lations at all angles �i.e., not merely horizontal and vertical
correlations�.

With uncorrelated percolation, it is easy to quickly pro-
duce precise plots of the correlation function over several
decades of distance and confirm that the correlation function
has a power-law form at the critical point. However, corre-
lations in the force-balance model have significantly greater
sources of uncertainty.

When we generate samples for uncorrelated percolation,
each site occupation is independent, so the correlation func-
tion calculated for C�i� is largely �although not entirely� in-
dependent of that for C�j� with j� i. So for uncorrelated
percolation, when we look at different pairs of points in a
single sample, we get somewhat independent estimates of the
correlation function for a range of distances. That is, we
quickly generate lots of independent data for the curve C�i�.
However, for correlated percolation models where there are
no finite clusters, the results for C�i� and C�j�, for j� i, are
highly correlated for a given sample, even for widely sepa-
rated i and j.

For a given amount of computer running time, the error
bars in the correlation function are thus substantially larger
than for uncorrelated percolation, and because they are cor-
related, it is difficult to reliably extract the asymptotic value
of C�i�. This is important because to get C�i�, we need to
subtract off the probability that two distant sites �i→� are
occupied in the infinite system limit �L→� after culling. For
our models, we do not know the infinite system occupation
probability after culling. �For uncorrelated percolation, it is
trivially identical to the initial occupation probability, as
there is no culling.� The most straightforward solution is to
subtract off the asymptotic value of C�i� since we know that
the connected correlation function should approach zero as
i→. However, because the error bars at different i’s are
correlated, there are also large error bars in the asymptotic
value of C�i�. The functional form of C�i� is highly sensitive
to the constant subtracted off—over a limited distance range,
a power law and an exponential can look very similar if the
asymptotic value is shifted slightly. This means that that it is
difficult to reliably determine the form of the correlation
function. The correlation length,

�2 =



i

i2C�i�



i

C�i�
, �1�

is also very sensitive to a small shift in C�i�.
The end result is that it is difficult to get accurate results

for large system sizes, and we have limited our simulations
of correlation functions to L=100, 200, and 400. The corre-
lation length as a function of initial occupation density is
shown for these three system sizes in Fig. 21. For densities
��0.4, the correlations are clearly short ranged and are in-
dependent of the system size. For lower densities, the corre-
lation length grows with L. The curve for L=200 has a clear
peak at p�0.375; the L=400 data appear to have a peak at a
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FIG. 20. �Color online� Order parameter for the 24 NN model
using wired boundary conditions.

FORCE-BALANCE PERCOLATION PHYSICAL REVIEW E 81, 011134 �2010�

011134-9



larger L, although the largish error bars make its location
unclear. Thus, the data are somewhat suggestive of a length
scale that grows with the system size.

The position of the peak gives yet another plausible mea-
surement for pc�L�. If we compare pc�L� defined from the
probability of spanning for L=200, pc�L�=0.3671�0.0007,
which is lower than the estimated pc�L� from correlation
length data. However, this discrepancy should vanish in the
infinite system limit. Since the position of the peak is not so
clear for L=400 it is more difficult to discern the trend.

Because of the limited system sizes studied, it is some-
what difficult to determine with confidence whether the cor-
relation functions have power-law or exponential forms. The
correlations are very short ranged ���5� for p	0.4, indicat-
ing that the correlations are probably exponential �or a very
steep power law�. At lower densities, for most system sizes
and densities, the correlation function is exponentially de-
caying at long distances; for example, see Fig. 22, showing
the correlation functions for L=400 and p=0.37, 0.38, and
0.39. One exception to the generally observed exponential
behavior is the L=200 correlation function for p=0.395,
which appears somewhat power-law-like, as shown in Fig.
23. The density of p=0.395 differs slightly from the peak in
the plot of � for L=200 in Fig. 21. For the L=400 system,

the power-law-like trend of the correlation function near the
peak density is not as prominent and the correlation func-
tions appear more exponential.

These results should be compared with those of Parisi and
Rizzo for k-core percolation in four dimensions �46�. While
they found that � grew with decreasing �, they never ob-
tained correlation lengths greater than 10. So they also found
no power-law correlations. They argue that the four-core
transition in four dimensions is an ordinary discontinuous
transition with no diverging length scales. We note that their
systems had finite stable clusters and so may have different
properties than the systems considered in this paper. �The
fact that their systems had finite stable clusters also presum-
ably means that they had smaller numerical correlations be-
tween C�i� and C�j� for �i− j� large, allowing them to deter-
mine correlation functions for larger systems than here.�

B. 16 NN model and spiral model

Now we present results for the 16 nearest-neighbor force-
balance model and spiral model. We begin with the mean
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FIG. 21. �Color online� Correlation lengths for the 24 NN force-
balance model as a function of p, for L=100 and 200.
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FIG. 22. �Color online� Correlation function for L=400, for the
24 NN force-balance model, at p=0.37, 0.38, and 0.39. For clarity,
the p=0.37 correlation function has been shifted up by 1.0, and the
p=0.39 correlation function has been shifted down by 1.0.
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FIG. 23. �Color online� Correlation function for L=200,
p=0.395, for the 24 NN force-balance model. The best fit line has a
slope of −1.76�0.03.
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FIG. 24. �Color online� Peak of the mean culling time as a
function of L for the all three models. For the 16 NN model, the
best fit has a slope of 1.240�0.025. For the spiral model, the best
fit has a slope of 1.246�0.027. Wired boundary conditions are
used. The data for the 16 NN model have been shifted upward by
unity, and the data for the spiral model have been shifted downward
by unity.

M. JENG AND J. M. SCHWARZ PHYSICAL REVIEW E 81, 011134 �2010�

011134-10



culling time. The plot of the mean peak culling time as a
function of L shows a similar 5/4 exponent as was measured
for the 24 NN model, �=1.240�0.025. In fact, all three
two-dimensional models—the 24 NN, the 16 NN, and the
spiral models—are in quantitative agreement with another.
We find �=1.246�0.027 for the spiral model. These results
suggest that similar processes underlie the culling in all three
two-dimensional models �see Fig. 24�.

The probability of having a force-balance avalanche of
size s, P�s�, for the 16 NN model shows similar trends to the
24 NN model with a broad distribution of intermediate sizes
and a prominent peak for the largest sizes �see Fig. 25�. The
spiral model exhibits the same qualitative behavior as well.

Figure 26 shows the probability of spanning for periodic
boundary conditions. From these data we extract the width of
the transition as a function of L, as depicted in Fig. 27. We
plot both periodic and wired boundary conditions on a log-
log scale to demonstrate the significant deviations from a
power-law growing crossover length. We also plot the same
data for the 24 NN and spiral models for comparison. As
with the 24 NN model, the fitting form is clearly not a power
law in L. Figure 28 shows the widths using the fitting form
motivated by the TBF result. For the 16 NN model, one can
extract �=0.35�0.01 for wired boundary conditions and
�=0.42�0.03 for periodic boundary conditions.

In Fig. 29, similarly to Fig. 19, we choose pc�� so that
pc��− pc�L� as a function of L is well fit by the TBF func-

tional form. We obtain the best fit for pc��=0.497�0.007
for wired boundary conditions, which gives �=0.47�0.07.
For periodic boundary conditions, pc��=0.502�0.010 and
�=0.70�0.15. Once again, there is a discrepancy between
� extracted from the width data and � extracted from the
one-parameter fit.

A similar fit �not shown� for the spiral model finds
pc��=0.690�0.008, and �=0.49�0.08 for wired bound-
ary conditions. For the spiral model, Toninelli et al. �7,8�
proved that pc�� is the same as for direct percolation,
pc��	0.705, and found �=0.64. Our numerical results for
pc�� and � are both within two error bars from their exact
result, and a plot of ln�pc��− pc�L�� versus ln�ln L� for the
exact result of pc��	0.705 shows noticeable curvature.
Also, � extracted from the width data for wired boundary
conditions is �=0.32�0.01 and �=0.38�0.02 for periodic
boundary conditions.

Finally, Fig. 30 shows the order parameter � as a function
of p for various system sizes for the 16 NN model. As in the
24 NN model, the jump in � increases with increasing sys-
tem size suggesting that the transition is discontinuous. It
also appears that �=1 just above the transition for each in-
dividual curve �although there is some overall curvature for
the set of curves�.
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FIG. 25. �Color online� Log-log plot of P�s� for the 16 NN
model with L=128 in the presence of periodic boundary conditions.
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FIG. 26. �Color online� The probability of spanning for periodic
boundary conditions for the 16 NN force-balance model.
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V. SUMMARY AND DISCUSSION

While uncorrelated percolation is very well understood,
models of correlated percolation are much less so. We have
presented rigorous and numerical results on several force-
balance percolation models to help narrow the gap. On the
rigorous side, we have proven that pc�1 for the two-
dimensional models. This result places our interpretation of
the numerical data for the two-dimensional models on
sounder footing. A rigorous argument that the force-balance
percolation transition is discontinuous, at least in two dimen-
sions, is more difficult than in the case of jamming percola-
tion. In the jamming percolation models the underlying
mechanism driving the transition is two disjoint directed per-
colation processes. These two processes scaffold upon one
another such that the infinite cluster is bulky at the transition.
The underlying mechanism driving the transition in the
force-balance models is presumably the same as argued in
Sec. III B. Other models of directed percolation processes
will be key in constructing a rigorous argument for disconti-
nuity in the force-balance case.

Our numerical results for the force-balance avalanches
and the onset of the infinite force-balance cluster for all three
force-balance models strongly suggest a discontinuous tran-

sition. For the force-balance avalanches, the probability of
having an avalanche size s is broad for intermediate ava-
lanche sizes. There is also a well-defined avalanche size at
the tail of the distribution that becomes more prominent as
the system size is increased and as p is decreased toward the
transition. This suggests a bulky discontinuous transition.
Looking at the usual order parameter also points toward a
discontinuous transition in that the jump in the fractional size
of the largest force-balance cluster at the transition increases
with increasing system size. This trend was reported in Ref.
�11� for the 24 NN model only.

While our simulations of the three-dimensional model
with 26 nearest neighbors as defined in Fig. 5 are not as
extensive as in the two-dimensional case, we find similar
trends, namely, �1� a jump in the order parameter that in-
creases with increasing system size with pc��
=0.433�0.009 �but no proof that pc�1� and �2� a discrep-
ancy between the two values of �: �=0.75�0.14 from the
one-parameter pc�� fit and �=0.37�0.10 from the width
data. For this three-dimensional model, one may expect a
double logarithm as opposed a single logarithm with poten-
tially �	0.52 using the values for three-dimensional di-
rected percolation �45�. Given the small range of data, how-
ever, it is difficult to discriminate between the two forms.

So now that we know there is a transition �at least for the
two-dimensional models� and we surmise that the onset of
the infinite force-balance cluster is discontinuous, just as in
the case of jamming percolation, is there a quantitative con-
nection with jamming percolation beyond the heuristic argu-
ments provided in Sec. III B?

The results for the mean culling time quantitatively sug-
gest that at least the two two-dimensional force-balance
models and the spiral model are in the same universality
class. We obtained mean culling time exponents of
�=1.226�0.027, 1.240�0.025, and 1.246�0.027, for the
24 NN, 16 NN, and spiral models, respectively. Since all
three exponents are within one standard deviation of 5/4, the
equivalent exponent in the sandpile model, there is potential
for a sandpile model-like renormalization-group �RG� treat-
ment, at least for the culling dynamics for both sets of mod-
els. Further quantitative study of the distribution of force-
balance and spiral avalanche sizes will provide further
insights.

The crossover length data also indicate that, for the
system sizes studied, the mechanisms underlying jamming
and force-balance percolation are the same for the two-
dimensional models. Table I summarizes the values obtained

TABLE I. Values of pc�� and � obtained for the various
models.

Model Boundary pc�� �

24 NN Wired 0.414�0.008 0.51�0.09

16 NN Wired 0.497�0.007 0.47�0.07

Spiral Wired 0.690�0.008 0.49�0.08

24 NN Periodic 0.425�0.005 0.76�0.20

16 NN Periodic 0.502�0.010 0.70�0.15

Spiral Periodic 0.701�0.011 0.81�0.16
0.8 1 1.2 1.4 1.6 1.8 2

ln(ln(L))
-4

-3.5

-3

-2.5

-2

-1.5

-1
ln

(p
c(L

=
in

f)
-p

c(L
))

FIG. 29. �Color online� Fitting of pc�L� as a function of L using
the TBF fitting form, for the 16 NN force-balance model with
wired boundary conditions. We obtain the best fit with
pc��=0.497�0.007.
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FIG. 30. �Color online� Order parameter for the 16 NN model
using wired boundary conditions.
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for pc�� for the three two-dimensional models and the as-
sociated values of �.

We see that results for � for all three models with wired
boundary conditions are consistent with one another, al-
though the error bars are large. So, while our measurements
are not as precise, nor as accurate, as one would like �the
former possibly indicated by the differing values of � ob-
tained from the width data�, the consistency between the
three different models is readily apparent. In other words, the
models are most likely in the same universality class. We
have also included results for periodic boundary conditions.
For those, the results for pc�� are within the error bars of
the results for wired boundary conditions; for periodic
boundary conditions, the plots of ln�pc��− pc�L�� versus
ln�ln L� appear linear for a wider range of pc��, resulting in
significantly larger error bars. Finally, pc’s are independent
of the boundary condition, as expected.

Our force-balance data are indeed inconsistent with a
crossover length that diverges as a power law and are just as
consistent with the TBF fitting form as the spiral model data.
With the present data, we are unable to conclude that the
presumably two-dimensional model-independent value of �
is independent of the boundary conditions, although with
data for larger systems, and smaller error bars, such a trend
should emerge. A stronger numerical test of the same under-
lying mechanism for jamming percolation and force-balance
percolation would be to look for directed percolation using
anisotropic finite-size scaling, as was done in Ref. �7�. We
leave this for future work.

Our correlation length data above the critical point for the
24 NN model suggest a correlation length that grows with
the system size, as opposed to a finite one. However, for the
largest system sizes, we do not generally see the expected
power-law correlations at the transition associated with this
divergence. More work is needed to substantiate this trend,
which would be inconsistent with a diverging correlation
length. Of course, a study of larger systems might reveal a
finite correlation length. Our current correlation length re-
sults are to be contrasted with four-core percolation in four
dimensions, where a finite correlation length of about ten
lattice spacings was found, suggesting a garden-variety-type
discontinuous transition driven by nucleation �46�. Four-core
percolation in four dimensions contains finite clusters, which
provide a backbone for nucleation. In force-balance percola-
tion, however, there are no finite clusters so one may expect
a more unusual discontinuous transition.

Therefore, the scenario for force-balance percolation that
is most consistent with our data is that while the onset of the
infinite force-balance cluster is discontinuous, there is an ex-
ponentially diverging crossover length scale, and perhaps a
diverging correlation length scale. Our limited data for the
standard correlation length defined in the connected phase

make it difficult to discern any trend for growth, exponential
or otherwise. In continuous phase transitions, the crossover
length and correlation length diverge in the same way. With
this more unusual transition, it is not necessarily obvious that
the same behavior should apply. Moreover, we find quantita-
tive agreement with the dynamical exponent for sandpile
models not only for the force-balance models but also for the
spiral model as well, again, suggesting that they all are in the
same universality class. Finally, we expect that three-
dimensional versions of jamming percolation and force-
balance percolation should exhibit similar behavior as well,
as our data suggest.

Although the usual order parameter, the fraction of sites in
the infinite force-balance cluster, does not appear to be con-
tinuous, are there other candidates for an atypical continuous
order parameter? A potential candidate is to look at the sub-
set of the force-balance spanning cluster where the connec-
tivity is marginal, i.e., three connected. However, we do not
find any evidence for a fractal spanning three-cluster group
at the force-balance percolation transition, nor for a fractal
spanning four-cluster group. Given that pc is around 0.4,
each site has approximately ten neighbors at the transition.
The three-core condition is thus completely superseded by
the vectorial constraint, at least for this lattice model with
many nearest neighbors. While the dynamics of culling sug-
gest a critical sandpilelike model for the removal of redun-
dant sites, the removal of the marginal infinite cluster does
not. So at this time, we have not discovered an order param-
eter which is continuous at the transition.

While the jamming and force-balance percolation models
lead to a discontinuous transition �probably in the first case,
and most likely in the latter�, the fraction of the sites in the
infinite cluster grows linearly in p− pc. It would certainly be
interesting to uncover other finite-dimensional models that
have a discontinuous transition in which the fraction of sites
in the infinite cluster grows nonlinearly in p− pc above the
transition; such models would behave more like mean-field
models. At this point, we know of no such models. It may be
that finite-dimensional models of correlated connectivity per-
colation are too simple to capture this aspect of jamming,
and that one has to define forces on the network, as in rigid-
ity percolation. We are currently working toward this direc-
tion.
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